

Aeon Metals Limited

ABN 91 121 964 725

Level 7, 88 Pitt Street, Sydney, NSW 2000, Australia

P.O. Box 8155, Gold Coast MC. Qld 9726, Australia

> P: +61 7 5574 3830 F: +61 7 5574 3568

W: aeonmetals.com.au E: info@aeonmetals.com.au

ASX Code - AML

Shares on Issue: 347m Share Price: \$0.19 Market Capitalisation: \$66m Cash (31 March 2017): \$3m

All mineral resources projects located in Queensland:

28 July 2017

Zambian Copperbelt Style Geological Model

Aeon Metals Limited ("Aeon" or "the Company") advises that its geological team has developed a revised Walford Creek geological model which has successfully guided drill hole targeting in more recent holes at Walford Creek and enabled better definition of the high-grade zones along the Fish River Fault ("FRF").

The mineralisation at Walford Creek exhibits strong characteristics of Zambian Copperbelt style sediment hosted copper-cobalt mineralisation. Consistent with this, the lower pyrite unit 3 ("Py3") at Walford Creek contains the best copper grades. The Py3 is the first favourable site for mineral bearing hydrothermal fluids, driven from deep within the sedimentary basin to drop their metals (See Figure 1). Recent drill holes confirm the validity of the Zambian Copperbelt style model and provide real encouragement for further holes to identify more and continuous high grade copper and cobalt in the Py3 adjacent to the FRF.

Using this model to test the high-grade zone in the Py3 unit, the most significant result was;

• WFDD238: 27m @ 3.13% Cu, 0.25% Co, 1.34% Pb, 0.18% Zn and 38.36gt Ag from 126m;

This included bonanza high grade copper; 9m @ 6.85% Cu, 0.18% Co, 2.79% Pb, 0.27% Zn and 50gt Ag from 134m.

With application of the Zambian Copperbelt style model, Aeon is now confident of expanding Walford Creek into a world class Cu Co deposit through targeting the Py3 (from ~120m) along the extensive 25km strike of the Walford Creek system.

To the extent that the foregoing is an Exploration Target in terms of the JORC Code 2012, it is cautioned (as required by the JORC Code) that the potential quantity and grade is conceptual in nature, that there has been insufficient exploration to estimate a Mineral Resource (other than that already announced by the Company) and that it is uncertain if further exploration will result in the estimation of an increased Mineral Resource.

An additional geological metric from the Zambian Copperbelt style model is the zonation of metals with a high grade core of copper and cobalt and flanking lead – zinc – silver mineralisation. This appreciation of the zonation of these metals will assist in targeting zones where previous holes have flanked or skimmed the high-grade portions of the system. The Figure 1 schematic shows the relative ease of missing the high-grade zones and receiving moderate or low grades.

The locations for the holes completed during the 2017 drilling program are shown in Figures 2 and 3. Some of the RC holes are drilled as pre-collars for deeper holes which will be completed using the diamond coring technique.

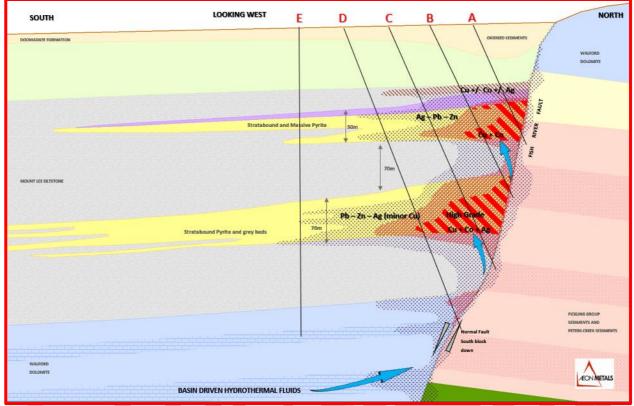


Figure 1: Schematic cross section of Walford Creek showing zonation of metals and drill effectiveness

The targeting of the high-grade mineralisation is schematically represented in Figure 1 which shows four possible hole positions on the schematic geological model section. They demonstrate the relative effectiveness of each hole to test the high-grade zones associated with the Py1 and Py3.

- A. Shallow holes from 50m to 80m intercept both possible supergene mineralisation together with strong copper and cobalt mineralisation associated with the Py1 in close proximity to the FRF.
- B. Drilled behind the shallow holes. These holes from 70m to 110m can still hit some good grade of both copper, cobalt and flanking lead and zinc in Py1 but can intercept the FRF above the high grade in Py3 (in the green siltstone) thus missing the best copper and cobalt zone.
- C. These holes which can range from around 90m to 160m depth depending on depth to the Py1 and Py3, have been the holes which have recently targeted for potential bonanza style copper grades in the Py3 close to the FRF. Holes WFDD236 and WFDD238 are recent examples of the success of this deposit model targeting.
- D. These holes have been typically from 150m to greater than 300m and can end up having no mineralisation associated with the Py1 and can still be too far from the FRF to successfully intercept the 'sweet spot' in the Py3.
- E. Holes drilled too far from the FRF such as many of the WMC vertical holes. These were drilled in part to test the SEDEX Ag-Pb-Zn model. Some angled holes were simply drilled too far south of the fault.

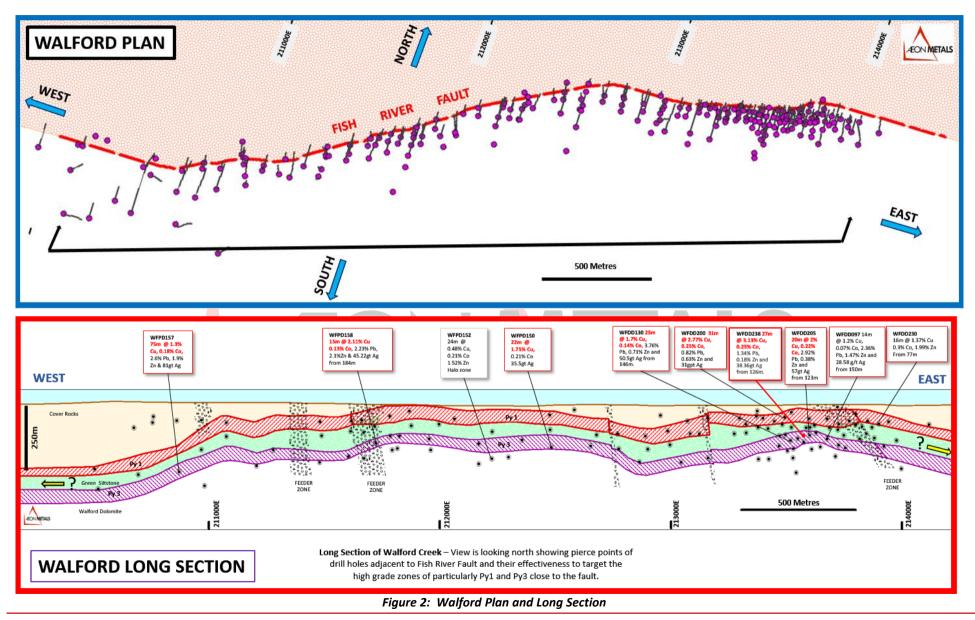
Discussion

It has been understood by Aeon for some time that some of the best copper at Walford Creek had been intersected broadly within the lower Py3 unit based on a scattering of old holes along the greater than 4km of strike currently identified. Given the extensive strike of the Walford Creek pyrite system which is open to both the east and the west, many early holes did not hit the best parts of the mineral system. In order to accurately test the 'sweet spots' as schematically shown in **Figure 1**, there is a need to first identify the actual FRF and then also the top of the chert horizon and Py1 to work out the geometry of the system and thus enable the design of deeper holes.

The geological model now being applied is based on the large database at Walford and now also draws on the voluminous research into the Zambian Copperbelt style system. This revised Walford model has very clearly demonstrated the potential of the Py3 to deliver more of these high-grade results as exemplified by the recently targeted holes **WFDD236** and **WFDD238**.

The Zambian Copperbelt style model indicated that the Py3 would likely see the best copper grades as it represents the first reducing facies for basin derived hydrothermal metal bearing fluids passing along permeable layers well below the Mount Les siltstone, host of the Py1 and Py3 pyritic sediments.

Zonation of metals, as shown in the Figure 1 schematic model, tend towards copper and cobalt rich zones close to the FRF and the lower portions of the pyrite units with halo mineralisation comprising lead and zinc mineralisation. High silver and also cobalt extend as an envelope beyond the high copper lead and zinc and can provide valuable clues to vectoring in on the valuable portions of the Walford Creek Deposit.


Opportunity

The long section in Figure 2 shows very clearly that for much of the four kilometre strike currently drilled at Walford Creek, relatively few holes have actually intercepted the likely 'sweet spots' of, particularly, the lower Py3 lens.

To the west of Vardy, only a handful of holes have successfully tested the Py3 unit close in to the FRF. More holes have drilled the Py3 but further out from the FRF. These are typified by hole WFPD152 which went below the 'sweet spot' in Py3 and intercepted modest halo or fringe style mineralisation including some broad low grade zinc.

Application of the extensive drilling data base and the Zambian Copperbelt style model will provide the opportunity to more accurately target high grade mineralisation, particularly in the lower Py3 lens.

28 July 2017

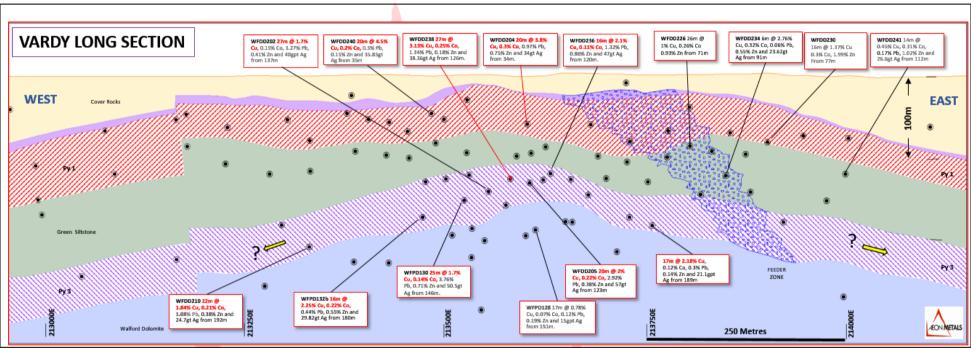


Figure 3: Vardy Long Section showing hole pierce points into Fish River Fault and simplified geology

For more information, please contact:

Hamish Collins Managing Director

info@aeonmetals.com.au www.aeonmetals.com.au

APPENDIX 1 - COMPETENT PERSONS STATEMENT

The information in this report that relates to Aeon Metals Limited's exploration results is based on information compiled by Mr Dan Johnson who is a Member of the Australian Institute of Geoscientists and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the "JORC Code"). Mr Dan Johnson is a full-time employee of Aeon Metals Limited and consents to the inclusion in the presentation of the exploration results including any Exploration Targets in the form and context in which they appear.

APPENDIX 2 – SIGNIFICANT DRILL RESULTS TABLE

	Fasting	Northing	AZI	Dips	Intersect m		From	То	Cu	Со	Pb	Zn	Ag
Hole No.	Easting		degrees	degrees			m	m	%	%	%	%	g/t
WFDD224	213680	8032006	355.00	-65	45.00		31.00	76.00	0.40	0.06	0.74	0.95	28.74
					Incl	11.00	62.00	73.00	0.42	0.14	0.79	3.08	35.00
WFDD225	213730	8032013	355.00	-72.5	67.00		40.00	107.00	0.40	0.20	0.32	1.92	20.30
						16.00	58.00	74.00	0.86	0.50	0.53	0.56	40.60
						36.00	71.00	107.00	0.36	0.14	0.30	3.50	14.82

WFDD226 213805 8032018 355.00 -69	12.00	54.00	66.00	0.01	0.06	1.19	2.21	25.80
	26.00	71.00	97.00	1.02	0.26	0.15	0.93	37.54
	incl 14.00	71.00	85.00	1.42	0.31	0.25	0.88	37.00
WFDD227 213855 8032023 355.00 -62	5.00	73.00	78.00	0.50	0.15	0.15	0.97	22.74
	NB	78.00	84.00	с	ross fault	and no o	core retu	rn
	and 4.00	84.00	88.00	0.30	0.11	0.41	3.77	14.80
			1		T	T	1	
WFDD228 213727 8032044 355.00 -60	3.00	44.00	47.00	0.43	0.06	0.15	0.05	23.77
	and 5.00	63.00	68.00	0.12	0.02	0.12	2.29	28.85
WFDD229 213806 8032048 355.00 -70	26.00	36.00	62.00	0.44	0.13	0.22	1.46	30.24
	Incl 5.00	52.00	57.00	1.12	0.24	0.34	5.27	47.81
	and 2.00	66.00	68.00	1.73				
WFDD230 213903 8032025 355.00 -70	10.00	58.00	68.00	0.08	0.03	0.22	2.48	17.70
	and 2.00	73.00	75.00	0.01	0.07	0.27	2.70	15.00
	and 16.00	77.00	93.00	1.37	0.30	0.53	1.99	20.53
	incl 7.00	81.00	88.00	2.72	0.37	0.80	1.72	21.70
WFDD231 213949 8032026 355.00 -70	28.00	62.00	90.00	0.35	0.12	0.79	0.92	21.52
	incl 14.00	67.00	81.00	0.54	0.10	1.34	0.92	20.75
	and 9.00	90.00	99.00	0.05	0.13	0.50	1.50	9.45
								I
WFDD232 214000 8032033 355.00 -70	12.00	85.00	97.00	0.40	0.05	0.14	0.34	19.89
	and 7.00	100.00	107.00	0.16	0.04	0.04	1.00	4.58
WFDD233 213753 8031957 355.00 -60.00	10.00	83.00	93.00	0.03	0.07	1.30	0.94	37.24
	NB		void of 5m from 93m with no sample return					
	and 8.00	98.00	106.00	0.39	0.09	0.04	0.39	5.10
WFDD234 213855 8031977 355.00 -60.00	6.00	91.00	97.00	2.76	0.32	0.06	0.35	23.60
	and 4.00	97.00	101.00	0.12	0.18	10.12	2.12	41.05
	and 4.00	122.00	126.00	0.69	0.16	0.20	1.14	14.70
	NB 4m void fi	om 106m tl	hen 2m vo	id from 1	16m and	another	2m from	120m

WFDD235 21370	3 8031951	355.00	-60.00	8.	00	70.00	78.00	0.14	0.09	0.15	3.14	10.36		
				and	11.00	78.00	89.00	0.66	0.27	0.06	0.29	25.40		
				and	7.00	153.00	160.00	0.69	0.05	0.05	0.04	7.80		
WFDD236 21363	1 8031942	355.00	-63.50	5.	00	67.00	72.00	0.60	0.36	0.14	0.38	24.22		
						NB 21m of no sample / void from 72m to 95m								
				and	16.00	120.00	136.00	2.10	0.11	1.31	0.86	46.65		
				incl	5.00	121.00	126.00	5.12	0.14	3.63	0.86	87.33		
					NB Mo	is exceptio	nally high	over this	16m inte	erval. 0.1	2% Mo.			
WFDD237 21360	5 8031946	355.00	-60.00	20	.00	30.00	50.00	0.40	0.07	2.53	0.17	19.00		
				and	15.00	55.00	70.00	0.40	0.27	0.42	0.84	17.33		
				and	18.00	70.00	88.00	0.01	0.24	0.01	2.20	1.00		
						1						r		
WFDD238 21357	9 8031904	355.00	-60.00	4.	00	31.00	35.00	0.50	0.03	0.05	0.03	9.79		
				and	16.00	69.00	85.00	0.03	0.09	0.25	0.87	10.20		
				and	27.00	126.00	153.00	3.13	0.25	1.34	0.18	38.36		
				incl	9.00	135.00	143.00	6.85	0.18	2.79	0.27	50.38		
WFDD239 21353	1 8031898	355.00	-60.00	6	m	23.00	29.00	0.02	0.00	2.38	0.01	33.46		
				and	4.00	30.00	34.00	2.79	0.17	0.07	0.02	22.26		
			Л	and	14.00	62.00	76.00	0.00	0.10	0.24	2.94	17.48		
				and	12.00	81.00	93.00	0.32	0.25	0.28	0.75	20.67		
WFDD240 21348	1 8031949	355.00	-60.00	20	.00	35.00	55.00	4.45	0.20	0.50	0.15	35.85		
		NB - Core loss from 43 - 45m and 50 - 51m												
WFDD241 21400	1 8032003	355.00	-60.00	14	.00	112.00	126.00	0.45	0.31	0.17	1.02	26.60		
				NB Loss core in void from 126 to 140m										
				then	9.00	140.00	149.00	0.05	0.09	0.30	0.91	13.03		

APPENDIX 3 – DRILL PROGRESS TABLE

hole_id	gda94_East	gda94_North	gda94_RL	azimuth(grid)	dip	max_depth	
WFDD224	213680	8032006	107.0999985	0	-65	78.30000305	
WFDD225	213730	8032012	106.5	0	-72.5	109.8000031	
WFDD226	213805	8032018	106.8000031	1	-70	110.9499969	
WFDD227	213854	8032024	107.0999985	0	-65	105.5	
WFDD228	213728	8032041	107.0999985	0	-65	81.5	
WFDD229	213806	8032042	107.0999985	0	-70	84.69999695	
WFDD230	213905	8032025	107.4000015	0	-70	102.5999985	
WFDD231	213948	8032027	107.4000015	0	-70	102.5	
WFDD232	214000	8032036	107.0999985	0	-70	115.1999969	
WFDD233	213753	803195 <mark>9</mark>	105.9000015	0	-60	150.3000031	
WFDD234	213855	8031975	106.1999969	0	-60	151.6999969	
WFDD235	213704	80319 <mark>48</mark>	105.5999985	0	-60	165	
WFDD236	213630	803 <mark>1942</mark>	105.5999985	0	-63.5	141.1000061	
WFDD237	213605	80 <mark>3194</mark> 6	105.9000015	0	-60	117.1999969	
WFDD238	213579	8031904	105.3000031	0	-60	161.1999969	
WFDD239	213531	<mark>80</mark> 31898	1 <mark>05.599</mark> 9985	0	-60	156.3999939	
WFDD240	213481	8031949	10 <mark>6.8000</mark> 031	0	-60	67.40000153	
WFDD241	214001	8032003	106.5	0	-67	158	
WFRC242	214105	8032043	106.1999969	0	-60	100	
WF <mark>R</mark> C243	214190	8032053	105.3000031	0	-60	78	
WF <mark>RC</mark> 244	214389	8032519	101.5999985	304	-60	80	
WF <mark>RC</mark> 245	214499	8031951	103.1999969	355	75	180	
WF <mark>PD</mark> 246	214119	8031987	105.3000031	7	-72	96	
WF <mark>RC</mark> 248	211615	8031250	103.8000031	0	-60	60	
WF <mark>RC2</mark> 47	213830	8031936	105.5999985	10	-66	52	
WF <mark>RC2</mark> 49	211718	8031281	101.9000015	2	-60	80	
WF <mark>RC2</mark> 50	211370	8031076	101.9000015	0	-63	132	
WFRC251	211881	8031311	101.3000031	0	-73	214	
WFRC252	211483	8031124	101.5999985	0	-62	120	
WFRC253	211489	8031171	103.8000031	2	-65	57	
WFRC254	211279	8031028	101.5999985	0	-72	120	
WFRC255	211433	8031115	102.1999969	0	-61	99	
WFRC256	212228	8031605	100.4000015	0	-60	51	
WFRC257	212328	8031650	98	3	-60	60	
WFPD258	213806.2	8031990.2	106	9	-78	169.6000061	
WFRC259	213453	8031945	106	0	-60	50	
WFRC260	213904	8031992	105	5	87	76	
WFPD261	212347	8031585	98	0	-66	186	